I. PURPOSE

The following procedures have been adopted to address responses to, and the special problems in dealing with fireground operations at the scene of a High-rise incident. Command responsibilities, and Command options must still be met as covered in this manual.

II. POLICY

These procedures are adopted by the Volusia County Fire Chiefs’ Association to aid agencies with interoperability at large scale incidents involving life and property. All countywide adopted policies concerning Command, accountability, and employee safety should be considered when using this policy.

Note: This procedure is a guideline and may be altered to reflect minimum staffing levels. Not every agency is the same and it should be noted as such.

III. PROCEDURES

A. INTRODUCTION

1. Paragraph 3.3.36.7 of NFPA 101®, Life Safety Code, 2012, defines a high-rise building as: a building where the floor of an occupiable story is greater than 75 feet (23 meters) above the lowest level of fire department access.

2. High-rise buildings account for some of the most complex structures that will be faced when dealing with fire situations. The actions of the first arriving companies will have a great impact on the success or failure of this particular operation. The value of pre-planning and company surveys cannot be overstated. However, when faced with the prospect of an
unknown fire situation, the following guidelines will provide the most effective and efficient means to controlling and mitigating the incident.

B. COMMAND RESPONSIBILITIES

1. It shall be the responsibility of the first due Chief Officer to ensure that an adequate Command Structure is in place to manage the incident in a prudent and safe manner minimizing loss of life and property.

2. In the event that a Fire Department Command Officer is unable to immediately respond to the high-rise incident, it will be the responsibility of the second due engine company officer to assume command from the first arriving engine company officer and function in that capacity until relieved.

C. UNIT OBJECTIVES

1. All units should exercise a 200 foot safety perimeter around the building.

2. All units should bring the listed equipment and any additional equipment as determined by Command of listed in their individual roles:
 a. High Rise Pack
 b. Spare SCBA Bottles
 c. Hand Light
 d. Forcible Entry Tools
 e. Rope Bag
 f. 6’ Pike Pole

3. If the first arriving reports “smoke showing” or determines a “working fire” the first arriving officer should automatically request an additional alarm. High-rise buildings are tightly constructed. Any indication of fire or smoke through the exterior skin is a good indication of a serious fire that may overtax the initial alarm assignment.

4. Determine the type of occupancy: commercial (with potential open floor plan) or residential

D. ENGINE COMPANY OPERATIONS

1. First Engine:
 a. Upon arrival, the Company Officer will give the Initial Report (size up) of building size, occupancy type, visible conditions and announce his/her actions and establish command.
b. Attempt to obtain necessary keys from Knox box if applicable (consider a ladder to reach the Knox box) for access to elevator controls (state key), the fire floor, and rooms on the fire floor. If readily accessible, consult fire alarm panel for additional information.

c. Determine the method of ascent to the reported fire area (stairwell or elevator). If an elevator is to be used, it will be operated using the firefighter feature. After off-loading two floors below the fire floor, return the elevator manually to lobby for further use.

d. Drop off spare SCBA bottles 2 floors below (Resource), then proceed to the fire floor, report the following information to the Incident Commander:
 i. Identify the actual fire floor, location of room, quadrant, etc.
 ii. Conditions on the fire floor: heat, smoke, life hazards, fire potential, ventilation requirements, etc.
 iii. Actions to be taken: rescue, evacuation, suppression, etc.
 iv. Initial fire suppression activities:

 Note: An aggressive coordinated attack has proven to be the most effective tactical option in the majority of high-rise fire situations.

e. Connect to the most appropriate standpipe, for the fire conditions that are present (preferably one floor below).

f. Be prepared to encounter occupants and direct them to an exit or to a location where they can safely wait for rescue.

g. Driver Engineer
 i. After dropping off the officer, firefighter and equipment at the front door, the Driver Engineer will move the apparatus to a location away from the building to allow clear access for incoming personnel.
 ii. Will report to the lobby and establish “Lobby Control”.
 iii. Will assist and direct personnel to the best way of ascending to the fire floor (stairwell or elevator).
 iv. Will maintain accountability of personnel entering and exiting the building. Units will drop off their passport to Lobby Control as they enter the building.
 v. Will maintain radio communications with fire floor personnel and the Incident Commander if applicable.

 Note: If the first arriving unit is staffed with two personnel, they will notify “Central” that Lobby Control will not be established by them.

2. Second Engine
b. The Driver Engineer will drop off the officer. The Driver Engineer and firefighter will proceed to provide water supply to the sprinkler/standpipe system.

c. Will provide a water supply to the fire building normally prioritized in the following order:
 i. Standpipe system
 ii. Sprinkler system
 iii. Provide make shift fire protection systems for fire floor operations personnel when there is no built-in fire protection system.

d. The procedure of establishing a water supply will remain flexible, but keep in mind:
 i. Location/capacity of the fire hydrant
 ii. Location of the standpipe/sprinkler FDC
 iii. Number of FDC’s
 iv. Collapse zone
 v. Other hazards (falling glass/debris)

e. The Officer will assume the role of “Building System Officer”
 i. These responsibilities will include control of: alarm systems, HVAC systems, internal building communications, elevator controls, contact building engineer, etc.

f. Once water supply is complete the Firefighter will report to “Lobby Control” to assist.
 i. The firefighter may be tasked with elevator operator or assist with stairwell support.

3. Third Engine

 a. Unload all equipment at the front door. The driver will move the apparatus to a location away from the building to allow clear access to incoming personnel. The driver will then meet up with his/her crew in the lobby directions to the fire floor.

 b. The crew will then proceed to 2 floors below the fire and drop off spare SCBA bottles. The crew will then proceed to the fire floor and establish a second attack line unless given a different assignment.

4. Fourth Engine

 a. Unload all equipment at the front door. The driver will move the apparatus to a location away from the building to allow clear access to incoming personnel. The driver will then meet up with his/her crew in the lobby.

 b. The crew will report to Lobby Control for information and directions to the fire floor.
c. Proceed to the floor above the fire and stage spare SCBA bottles on the floor above the fire.
d. Upon arrival to the floor above crews may be tasked with:
 i. Recon and report correct floor number, fire and smoke conditions, along with fire spread.
 ii. Conduct a primary search.
 iii. Determine the need for an attack line and proper placement along with the need for additional resources

E. TRUCK COMPANY OPERATIONS

1. First Truck
 a. Prior to arrival, contact the Incident Commander for instructions of placement and assignment of duties. Keep in mind, search and rescue; utilities, forcible entry, and ventilation are truck company functions, but for the first arriving truck company, the primary responsibility is rescue.
 b. Upon arrival, will spot the Aerial apparatus in an area that will be easily accessible for aerial operations if needed, but will not obstruct other apparatus access to the fire ground.
 c. The crew will report to Lobby Control for information and directions to the fire floor.
 d. Proceed to 2 floors below the fire and drop off spare SCBA bottles. Then report to the fire floor and begin primary search of the fire area, along with adjacent spaces, and report the findings to Command.
 e. Assist the first Engine with forcible entry, ventilation, opening ceilings and walls, removal of obstructions, and evacuation.

2. Second Truck
 a. The crew will report to Lobby Control for information and directions to the fire floor.
 b. Proceed to 2 floors below the fire and then crews may be tasked with:
 i. Report to upper most floor and report conditions.
 ii. Report to roof, report conditions and vent as needed.
 iii. Work towards the floor above the fire and assist 4th Engine.
 c. Crew will keep spare SCBA bottles with them.

F. RESCUE TRUCK OPERATIONS

1. Rescue Truck
 a. Upon arrival at the scene, the crew should report, bunkered out and with the necessary EMS equipment, to the Incident Commander or Lobby Control (in that order) for duty assignment.
b. The crew should also be prepared to function in a support mode designated by the IC; as Rehab, Treatment/Medical, Stairwell, or in any other capacity needed.

Note: All units will report to Resource (2 floors below the fire) with spare SCBA bottles (exceptions: 2nd Ladder/Tower and 4th Engine. They will keep spare SCBA bottles with them). All units will proceed to their assignments via the attack stairwell after reaching the Resource area level.

G. DEPARTMENT STAFF AND MUTUAL AID

1. All Fire Department Staff will report to the INCIDENT COMMANDER upon arrival at the scene for any duty assignment.
2. It will be the responsibility of the INCIDENT COMMANDER to designate the response destination and duty assignment for any and all Mutual Aid responding units. This can be coordinated through fire dispatch, or when the initial call for Mutual Aid is given.

Note: When responding as a Mutual Aid Unit, advise the Incident Commander of the number of personnel that are assigned to the unit. This will assist the Incident Command with assignments.

H. SPECIAL CONSIDERATIONS AND UNIQUENESS TO HIGH-RISE FIRE

1. Extinguishment Delay
 a. Delay in a report on “water on the fire”. A substantial time lag occurs in fires on upper floors of high rise buildings between arrival of the fire department and the time when a handline is placed into operations. Fire conditions can be expected to worsen during this period.

2. Stairwells and potential need for assets for Stairwell Support
 a. Stairwell Support
 i. In structuring firefighting operations, at least one stairway should be kept clear to provide access to, or escape from, floors above the fire. This will require communicating which stairway is used for firefighting access and/or ventilation and which is being kept clear for evacuation purposes.
 ii. Almost all stairways have vent hatches or roof access at the top to allow venting of trapped smoke. Avoid intentionally venting the fire/smoke into the stairwell. Newer buildings with pressurized stairwells usually do not require fire department mechanical ventilation; in this case keep the stairwell doors closed to maintain stairwell pressurization. Be prepared to pressurize for older buildings.
3. Elevators
 a. Elevators that are not compromised or in immediate danger should be utilized when available.
 b. Do not use elevators that are not equipped with the “Firefighter Feature”.
 c. Check the elevator shaft for any hazards (smoke or fire) prior to entering the elevator car.
 d. Consider using remotely located elevators if shaftways or the elevator penthouse is threatened in the immediate fire area.
 e. Utilization of building elevators is the most expedient and less manpower intensive way to provide equipment to Resource (2 floors below the fire floor).
 f. Care should be taken to not overload the elevator with personnel or equipment.
 g. Elevators that are not compromised or in immediate danger should be utilized when available.

4. Air Handling System
 a. Some air handling systems are designed for smoke removal and fresh air supply. Regardless of the type of system, it should be shut down if possible until the fire is stabilized and the method of smoke removal is decided upon.

5. Communications
 a. Command should strongly consider the problems inherent in dealing with operations inside large buildings. Face to face communication is the preferred mode of fire ground communication when applicable. Care should be taken not to over-use radio time as more emergent situations may deem transmission necessary.
 b. A true high-rise incident will become a very long campaign and Command needs to consider the request for additional radio batteries early.

6. Alarm and Communication Systems
 a. Fire alarm and one or two-way voice communications systems provide a method of sounding alarms or making announcements on individual floors selectively or to the whole building. These systems may prove beneficial in making announcements when Command decides to defend in place. The Building System Officer should be prepared to silence the alarm when requested by Command.
 b. Personnel also need to be familiar with buildings that have hardwired systems in place and the location of the jacks on
each floor, as well as the handset location (usually in the “Fire Control Room”) for crews.

7. Building Fire Pumps and Pressure-Reducing Valves (PRVs)

a. Understanding fire pumps and PRVs

i. If an Engine needs to pump the system in a high-rise building, it will have to match the building’s pump pressure and possibly exceed it. Either the building’s pump or the pumper does the job. They do not work together.

ii. If the building’s pump fails and the building is equipped with PRVs that are not field adjustable, the fire department pumper will have to pump into the system as though the fire were on the roof, the highest pressure. A building’s fire pump does not have the capability of knowing which floor the fire is on, therefore, the building pump is designed to pump the entire system. Because of the high pump pressures created on the lower floors due to the “dummy” pump, there needs to be a way to reduce the pressure on the lower floors to provide the appropriate pressure to the lower floor outlets. This is done through a PRV. The PRV is designed to compensate for the higher pump pressure on the lower floors to a manageable pressure.

iii. The key to understanding PRVs is to remember it is adjusted to provide the usable pressure for a specific floor based on the inlet pressure of the valve. What makes this significant to Driver Operator’s is if the Engine pressure of the fire department pumper were to be calculated based on the fire floor elevation alone, without considering the restriction placed by the PRV, the result would be an inadequate outlet pressure on the fire floor. Again, the value is designed to give the proper outlet pressure based on the building’s “dummy” pump pre-determined pressure.

iv. An exception to this rule applies to PRVs that can be adjusted or circumvented in the field. If the PRV encountered is the type that a Firefighter can adjust, steps should be taken by the firefighter to allow the valve to be opened fully. If the valve is opened to its full range, this information should be transmitted to Command and the Driver Operator, so the pressure calculation can be figured appropriately. The Driver Operator does not have to pressurize the system the same way the building’s pump does because the flow restriction has been eliminated.

v. Members should use extreme caution when working from standpipe systems with PRVs. The Firefighter has
no indication as to the setting of the PRV. It could be possible that a PRV with the wrong setting was installed. If the PRV is set too low, no amount of pumping will overcome it, because it will do what it is designed to do (reduce the pressure). It is imperative that attack crews utilize the in-line pressure gauge to determine the appropriate pressure. Command must be notified immediately, and an alternate attack plan should be made if the PRV is set too low. This could include stretching supply hose up the stairwell.

8. Wind Driven Fire

a. Fires in high-rises and other large structures are capable of becoming wind-driven. Smoke and heat spreading through the corridors and the stairs of a building can limit building occupant’s ability to escape and can limit firefighter’s ability to rescue them. Changes in the building’s ventilation or the presence of an external wind can increase the energy release of the fire. This can also increase the spread of fire gases throughout the building. An exterior report of fire being blown back into the building reveals that a wind-driven fire is occurring. If the fire is pulsating back and forth from exterior venting to being blown back into the building, plan for a wind-driven fire.

b. Command should respond to the report of a wind-driven fire ensuring the establishment of positive pressure ventilation of the attack and evacuation stairwells. Pressurization of the stairwells should keep smoke and fire gases to the fire floor. It is not expected that this pressurization will combat the wind-driven event and reverse the flow of fire and gases. The main objective is to keep the stairwells charged with fresh air to help occupant’s escape and firefighting activities. If needed, crews may need to deploy multiple fans to achieve the desired pressurization of the building or stairwell. This may be achieved by combining multiple fans at the lobby level or placing fans several floors apart.

9. Room of Refuge

a. When advancing on the fire floor, crews should designate a room of refuge on the same side of the hallway as the fire. Upon finding the fire, a Crew should ensure the next door back toward the attack stairwell is forced open. If crews are forced to retreat, getting to the stairwell should be the first priority. If there is not sufficient time to make a stairwell, this room of refuge will already be available.
10. Mid-Rise/Hybrid Buildings

a. There are some buildings that exceed the traditional height of a garden apartment and are not generally considered a high-rise, typically between 4-6 stories. Because they are not considered a high-rise they will lack many of the code requirements in relation to fire protection and life safety features that are required on high-rise buildings. These types of buildings usually lack a main lobby that accesses most stairwells and an elevator bank. The State elevator key will also not be required for these buildings. They utilize a mix of construction types (masonry, steel, wood frame). They usually contain sprinkler and standpipe systems and may or may not have a fire pump. The floor configurations are mostly compartmentalized. Because most of these buildings have been constructed under newer codes, vertical fire stopping is generally present and they typically lack a common cockloft.

b. The first Company Officer must quickly determine whether attack lines will be deployed from the Engine or from the building’s standpipe system. The fire may be on the first floor facing the street or on the sixth floor interior hallway. The first arriving Company Officer has the responsibility to determine the appropriate size attack line and from what source it will be deployed (the Engine or the building system). That decision will dictate the actions of the subsequent arriving Companies.

Note: Crew should always be conscientious of other hazards that include open shafts. These could be from elevators or HVAC (return vents and delivery vents) systems.

I. OPERATIONAL ORGANIZATION FOR A WORKING HIGH-RISE FIRE

1. The major elements which need to be considered in most working high-rise situations are:

a. **Lobby Control:** The Lobby Control Group is responsible for the control of the elevator and stairway access, for the operation of alarm panels, and the communications system. This group maintains a log of all personnel going up to the fire area. The apparatus operator of the first-in Engine shall establish Lobby Control.

b. **Building Control:** The Building Control Group is responsible for establishing a water supply to the building. It is also responsible for controlling the HVAC systems, checking the fire pump and sprinkler system, and verifying the main alarm panel when remotely located. Location is determined by Command, with consideration given to the Fire Control Room when remotely located. This group is flexible to the needs of
Command and works in support of Lobby control by controlling the building’s internal functions. Consideration should be given by Command to establish designated elevator operators with manpower from this group when needed.

c. **Fire Floor:** Companies assigned to the fire floor are primarily concerned with search, rescue, and fire attack.

d. **Floor Above:** Units on the floor above will evaluate the safety of the occupants and determine if evacuation or the need to defend in place will be used. They will also check for extension in the upward direction.

e. **Floor Below:** The floor below must be checked for any possibility of fire extension and for property conservation needs. Salvage is usually the most significant activity on the floor below. The area is also where RIT will stage.

f. **Roof/Uppermost Floor:** The Crew that will check and report roof conditions and the condition on the uppermost floor. They will ventilate the roof by natural openings to prevent mushrooming if needed. They also provide the primary search for the uppermost floors and will work their way back down towards the floor above.

g. **Safety:** Command needs to assign a Safety Officer or a Safety Group depending on the extent of the fire.

h. **Evacuation:** The need for evacuation may or may not be a concern of Command. Depending on the extent of the fire, Command may opt to have occupants remain in their rooms, particularly in compartmented, fire resistant buildings. This is known as “Defend in Place.” Occupants must be reassured of their safety by staying in their rooms. When evacuating upper floors, one stairway must be kept clear for evacuation purposes. The evacuation stairway must be kept free of smoke (this may be accomplished by means of pressurization using a ventilation fan at ground level). Occupants in the immediate fire area should be evacuated as quickly as possible to the third floor below the fire floor.

i. **Resource:** the Resource Group should be established in a convenient location providing good access to the fire floor area (normally two floors below). This group provides a supply of personnel and equipment to support firefighting operations.

j. **Rehab:** A Rehab Group should always be considered by Command at high rise fires. Command should consider putting this group on the same floor as the Resource Group.

k. **Treatment/Medical:** A Treatment/Medical Group should always be considered by Command at high-rise fires. The
Treatment Group may be located on the same floor as Resource.

1. **Staging:** Staging will be utilized after the initial attack operations have been supported by equipment and manpower. Apparatus parked in close proximity to the building, by Companies assigned to the interior, should be moved to the Staging area as time permits. When equipment from an apparatus in Staging is needed inside, the apparatus should be brought to a convenient area and parked as designated. Establishing staging should be considered with a 3rd or greater alarm.

High-rise Initial Dispatch:

4 Engines, 1 Aerial, 1 Rescue, 2 Battalion
Reference Sheet for Building Info.

Building Info

<table>
<thead>
<tr>
<th>Bld. Name & Address.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of floors above the grade level and any floors below grade.</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Occupancy: Commercial / Residential / mixed Com. & Residential</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Key Hydrant: For FDC stand pipe:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2nd Hydrant: Sprinklers and aerial operations:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3rd. Hydrant: Aerial operations:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Knox box location: (Side A, B, C, D. i.e. near front door, window, and 6ft. off ground).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FDC locations: Side A, B, C, D (behind? Near?).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FDC Sprinklers: Location Y / N (behind? near?).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FDC stand pipes: locations Y / N (behind? near).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Roof Manifold: Y / N. How many discharges, and size of discharge. (PSI at top of the roof).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprinkler shut off: location: (on each floor, in closet, in stairwell?).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stand pipe: (Stairwell, hall, both), (discharge at stand pipe riser, or hose cabinet).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Floor plan: (open, or compartmented, open atrium).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gas shut off: (location).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power shut off: (location, or room number).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Shunts: (location & what they control).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OS&Y: (Location, how many usually, one. newer buildings may have Two).</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes:</th>
<th></th>
</tr>
</thead>
</table>
FIRE CONTROL ROOM

FACP (floor & room number). __

Remote panels: (location). __

Smoke detection Y / N

Water flow alarm Y / N

Intercom system Y / N

Location of headsets? ___

Fire pump location? (How many intakes / GPM). __

Pressure Reducing Valve (PRV), (usually on lower floors location and or marked).______________

HVAC system? Location how to control it (on, off, auto), (hooked into the fire alarm). ____________

Evacuation plan Y /N (location) __

ELEVATOR / STAIRS

Elevators: (location, how many) vent at the top? ___

Elevators: (location, how many) vent at the top? ___

Elevators: (location, how many) vent at the top? ___

Elevators: (location, how many) vent at the top? ___

Elev. Room location ___

Hydraulic? (Should be on bottom floors) ___

Elec. Cable? (Should be on the roof) ___

Freight Elevator? __

Any access limits? (For stairs or elev. If so what floors do they stop at and which ones?) __________

Notes: ___
Stairs: (location, roof access, door or hatch, pressurized)

__

Stairs: (location, roof access, door or hatch, pressurized)

__

Evacuation chairs Y / N (stair chairs usually mounted in stairwell)

__

Master keys Location: (in Knox box, FCAP room, front desk, Security)

__

Elevator Keys: Y / N (if yes where)

__

HAZARDS

Underground parking: Y / N (weight limits?)

__

Trash chutes Y / N (location are they sprinkled)

__

Collapse zone

__

Best location to set up aerial if needed:

__

Roof: (no parapet wall).

__

Exterior:

__

Interior:

__

Built in extinguishing sys.

__

NOTES

__

__

__

__
High Rise

Paragraph 3.3.36.7 of NFPA 101®, *Life Safety Code*, 2012 edition, defines a high-rise building as: a building where the floor of an occupiable story is greater than 75 feet (23 meters) above the lowest level of fire department access.

Consider the rolls for the first and second due Engines to help augment each other:

- 1st Engine Driver Operator establish Lobby Control
- 2nd Engine Driver Operator and Firefighter establish water supply and Officer take over Lobby Control and consider growing to Building System Officer if a working fire.
- This means the 3rd Engine will take roll of back-up line on fire floor

Special considerations that are unique when dealing with High Rise fires:

- Delay in water on the fire because of access.
- Stairwells and the potential need for additional assets for stairwell support
- Use of elevators and the “Firefighter Feature”
- Air handling systems
- Communications issues (is there a need for a portable repeater system)
- Fire pumps and pressure-reducing valves (PRVs)
- Wind Driven Fires
- Rooms of refuge on the fire floor

Operational Organization for a working High Rise fire:

- Staging
- Lobby Control (Building System Officer/Building Control Officer)
- Resource
- Fire floor
- Floor above (not addressed in current document)
- Floor below and RIT (not addressed in current document)
- Roof and upper most floor (not addressed in current document)
- Evacuation (full vs defend in place or partial)
- Treatment
- Rehab

Other buildings that should get a High Rise response and tactics should be similar are Hybrid Buildings

- Usually over 3 stories and up to 6 stories
- Usually no lobby
- Crews normally utilize the stairs vs elevator
- If only 5 stories will not have the state elevator key